Instrumentation and Information Processing

Chapter 4: Orthogonality in measurement

Hiroyuki Shinoda
http://www.hapis.k.u-tokyo.ac.jp/ hiroyuki_shinoda@k.u-tokyo.ac.jp

Conclusion of this chapter

Quantity to be measured: \boldsymbol{x}, Noise : \boldsymbol{w}, Sensor output: $\boldsymbol{y}=A \boldsymbol{x}+\boldsymbol{w}$

* Each component of \boldsymbol{w} is random and equal in variance.

In the above measurement system, the ratio of the largest singular value to the smallest one of matrix A is close to 1 .

Each component of x can be measured with equal accuracy.

Nonsense two-dimensional sensor

It is impossible to estimate $\left(F_{x}, F_{y}\right)$ from the displacement sensor output $\left(V_{1}, V_{2}\right)$.

$\left(F_{x}, F_{y}\right)$ can not be identified if $\boldsymbol{G}=-\boldsymbol{H}$.

- But partial information can be obtained
- What component is measurable?

$$
\binom{\alpha}{\beta}=\binom{F x+F y}{F x-F y} \quad \Leftrightarrow\binom{F x}{F y}=\frac{\alpha}{2}\binom{1}{1}+\frac{\beta}{2}\binom{1}{-1}
$$

α : Unmeasurable
β : Measurable

Orthogonality in measurement

Example: Stress sensor

Quantity to be measured
--- Stress $\left(S_{x x}, S_{y y}\right)$

Sensor output

--- Voltage (V1, V2)

True value Noise

$$
\begin{aligned}
& \binom{S_{x x}}{S_{y y}}=\binom{1}{0} \quad\binom{V 1}{V 2}=\binom{a}{b}+\binom{e 1}{e 2} \\
& \binom{S_{x x}}{S_{y y}}=\binom{0}{1} \longrightarrow\binom{V 1}{V 2}=\binom{c}{d}+\binom{e 3}{e 4}
\end{aligned}
$$

Quantity to be obtained
$\left(s_{x x}, s_{y y}\right)$

Sensor output
$\left(V_{1}, V_{2}\right)$

Noise sphere

Range of $S x x$

Example 2: Chemical sensor

Sensor output for $\begin{aligned} & \text { component A of } \\ & \text { concentration } \alpha\end{aligned} \longrightarrow \alpha \mathbf{e}_{\mathrm{A}}, \quad \mathbf{e}_{\mathrm{A}}=\left(a_{1}, a_{2}, \cdots a_{n}\right)$
component B of concentration β

Measuring components (α, β) simultaneously

Question

Assume that an organism performs a kind of memory operation by autonomously changing and holding the concentrations of three chemical components $\left(x_{1}, x_{2}, x_{3}\right)$ [\%] in the body fluid. In the body, there are three kinds of sensors that output as

$$
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{ccc}
2 & 1 & 0 \\
2 & -1 & 0 \\
-1 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right),
$$

and the sensory system can detect each component of $\left(y_{1}, y_{2}, y_{3}\right)$ with an error of about ± 0.1. Assume that x_{i} can take values in the range of $0<x_{i}<10$, and there is no correlation among the sensing errors of each component.

Answer the amount of information in bit that this memory system can record in one operation.

Example 3: Image measurement

 Relationship between the sensing accuracy of the displacement and the camera position$$
\begin{aligned}
\left(x_{1}, x_{2}\right) & : \text { Object (point) position } \\
y_{i} & : \text { Point position in the image of } \\
& \text { camera } i
\end{aligned}
$$

y_{2}

y_{2}
y_{1}

Example 4

The 300 Hz sine wave signal $p_{\mathrm{A}}(t)$ from a sound source A and the 120 Hz sine wave signal $p_{\mathrm{B}}(t)$ from a sound source B simultaneously reach a microphone, and $p=p_{\mathrm{A}}+p_{\mathrm{B}}$ is observed.
Obtain the error of amplitude estimation of p_{A} and p_{B} from the observed waveform of p.
Assume that the observation duration $T=1 \mathrm{~s}$ and that the amplitude estimation errors when A and B exist independently are w_{A} and w_{B}, respectively.

Sensitivity vs direction

Sensor output 1

Space of sensor output \boldsymbol{y}

Understand the relationship between \boldsymbol{x} and \boldsymbol{y}

Sensor
output 2

Sensor output 1

Evaluation of measureability

$$
\mathbf{y}=A \mathbf{X} \quad \begin{array}{ll}
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=R_{1}\binom{x_{1}}{x_{2}}
\end{array} \begin{aligned}
& \binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right)\binom{x_{1}^{\prime}}{x_{2}^{\prime}} \\
& \binom{y_{1}^{\prime}}{y_{2}^{\prime}}=R_{2}\binom{y_{1}}{y_{2}} \quad
\end{aligned}
$$

- Singular value decomposition

$$
\begin{aligned}
A & =(m \times n) \\
R_{2} A R_{1}^{-1} & =(m \times m)(m \times n)(n \times n)=\left(\begin{array}{llll}
\lambda_{1} & & & 0 \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n} \\
0 & & &
\end{array}\right)
\end{aligned}
$$

Deriving singular value decomposition

(1) $A^{\mathrm{T}} A$ is diagonalizable since it is Symmetric matrix

$$
A^{\mathrm{T}} A=\left(\begin{array}{c}
n \times m \\
\end{array}\right)\binom{m \times n}{(m>n)}=\text { symmetric } n \times n \text { matrix }
$$

Therefore, we can find a orthogonal matrix R satisfying the following equation.

$$
R^{\mathrm{T}}\left(A^{\mathrm{T}} A\right) R=\left(\begin{array}{llll}
a_{1} & & & 0 \\
& a_{2} & & \\
& & \ddots & \\
0 & & & a_{n}
\end{array}\right)=(A R)^{\mathrm{T}}(A R) \quad\left(a_{i}>0\right)
$$

(2) Since

$$
(A R)^{\mathrm{T}}(A R)=\left(\begin{array}{llll}
a_{1} & & & 0 \\
& a_{2} & & \\
& & \ddots & \\
0 & & & a_{n}
\end{array}\right)
$$

all the row vectors of $(A R)^{\mathrm{T}}$ are orthogonal to one another, and the length of each row vector satisfies $\left\|\mathbf{p}_{i}\right\|=\sqrt{a_{i}}$.

(3) Therefore, when the row
vectors $\mathbf{q}_{1} \sim \mathbf{q}_{m}$ in a orthogonal matrix R_{2} safisfy

$$
\begin{aligned}
& \mathbf{q}_{i}=\frac{\mathbf{p}_{i}}{\sqrt{a_{i}}} \\
& \text { for } 1 \leq i \leq n(n<m),
\end{aligned}
$$

R_{2} satisfy the following equation.

$$
R_{2} A R=\left(\begin{array}{cccc}
\sqrt{a_{1}} & & & 0 \\
& \sqrt{a_{2}} & & \\
& & \ddots & \\
& & & \sqrt{a_{n}}
\end{array}\right)
$$

(Singular value decomposition)

Understanding by coordinate transformation

Sensor output
Quantity to be measured

$$
\mathbf{y}=A \mathbf{x}
$$

The measurement accuracy of \boldsymbol{x}^{\prime} can be evaluated by the singular values

Rotated sensor output

Rotated \boldsymbol{x}
(1) x_{i} for non-zero λ_{i} is measurable When the SDs of the \boldsymbol{w}^{\prime} components are comparable, the measurement error of x_{i} is proportional to $\frac{1}{\lambda_{i}}$
(2) Values of λ_{i} are the same $\longleftrightarrow A$ is orthogonal Sensor outputs for x_{i} are orthogonal to one another

Conclusion of this chapter

Quantity to be measured: \boldsymbol{x}, Noise : \boldsymbol{w}, Sensor output: $\boldsymbol{y}=A \boldsymbol{x}+\boldsymbol{w}$

* Each component of \boldsymbol{w} is random and equal in variance.

In the above measurement system, the ratio of the largest singular value to the smallest one of matrix A is close to 1 .

Each component of x can be measured with equal accuracy.

Notes

$>$ If the variances of the components of \boldsymbol{w} are not equal,
the methods in this chapter can be applied after scaling the parameters so that the variances are equalized.
$>$ Note that this chapter's discussions assumed no correlations among the noise components.

