Instrumentation and Information Processing

Chapter 3: Information in analogue pattern

Hiroyuki Shinoda

https://hapislab.org/public/hiroyuki_shinoda/keisoku_joho hiroyuki_shinoda@k.u-tokyo.ac.jp

Amount of information recorded in an analogue pattern
First step:
Hypersphere in multidimensional space is written as follows.

2D

$$
x_{1}^{2}+x_{2}^{2}=R^{2}
$$

3D

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=R^{2}
$$

n D

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots+x_{n}^{2}=R^{2}
$$

$>$ Signal is a point in a multidimensional space.
$>$ It is possible to define "volume" in multidimensional space.

For example, a region V of n dimensional space
$0<x_{i}<A_{i} \quad(i=1,2, \cdots n)$

Includes a specific number of the unit hypercubes defined as
$0<x_{i}<1 \quad(i=1,2, \cdots n)$.
The number of the unit hypercube included in V is $A_{1} \cdot A_{2} \cdots A_{n}$.

The volume of a hypersphere

$$
\begin{array}{ll}
\text { 2D } & \pi r^{2} \\
\text { 3D } & \frac{4 \pi}{3} r^{3} \\
n \mathrm{D} & A r^{n}
\end{array} \quad A(2 m)=\frac{\pi^{m}}{m!}
$$

Region of signal

$$
|\mathbf{x}|^{2} \equiv x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots+x_{N}^{2}<S
$$

U : Region of noise

$$
U=\left\{\boldsymbol{x} \mid\|\boldsymbol{x}\|^{2}<W\right\}
$$

V : Region of signal + noise

$$
V=\left\{\boldsymbol{x} \mid\|x\|^{2}<S+W\right\}
$$

???

3．Upper limit of transmittable amount of information
The volume of signal＋noise
ビット

The above H provides the upper limit．It has not yet been secured if actually H bit signal can be transmitted．

The upper limit of
the number of distinguishable statuses $=\mathrm{V} / \mathrm{U}$

Region of "signal + noise"

In 2D or 3D case, the
region of "signal + noise"
is written as

$$
|\mathbf{x}|^{2}<(\sqrt{S}+\sqrt{W})^{2}
$$

Region of "signal + noise" in multidimensional space

Most components of noise are orthogonal to signal

Supplementary explanation

Probability of $\|\boldsymbol{s}+\boldsymbol{w}\|^{2}>S+W+\Delta$

$$
\begin{aligned}
\|\boldsymbol{s}+\boldsymbol{w}\|^{2} & =\sum_{i=1}^{N}\left(s_{i}^{2}+2 s_{i} w_{i}+w_{i}^{2}\right) \\
& =S+W+2 \sum_{i=1}^{N} s_{i} w_{i} \\
& =S+W+2 \sqrt{S} w_{s}
\end{aligned}
$$

w_{s} is the component included in \boldsymbol{w} and parallel to \boldsymbol{s}, which is a probability variable that follows the normal distribution with variance W / N.

Therefore, most of $\boldsymbol{s}+\boldsymbol{w}$ exist in the region G between the two concentric spheres of
radiuses $\sqrt{S+W+2 \sqrt{S W / N}}$ and $\sqrt{S+W-2 \sqrt{S W / N}}$.
The volume ratio r of the outer and inner spheres is given as

$$
\log r=\log \frac{(S+W+2 \sqrt{S W / N})^{N / 2}}{(S+W-2 \sqrt{S W / N})^{N / 2}}=\frac{N}{2} \log \frac{S+W+2 \sqrt{S W / N}}{S+W-2 \sqrt{S W / N}}
$$

When $N \rightarrow \infty$

$$
\log r \rightarrow \infty, \quad \frac{1}{N} \log r \rightarrow 0
$$

Therefore replacing V with G (above) does not change the value of $H / N(N \rightarrow \infty)$.
4. Comparison of H with the previous chapter results

Case 1: $S \ll W$

$$
H=\frac{N}{2} \log \left(1+\frac{S}{W}\right) \approx \frac{1}{2 \log _{\mathrm{e}} 2} \frac{N S}{W}=0.72 \frac{N S}{W}
$$

Case 2: $S \gg W$

$$
H=\frac{N}{2} \log \left(1+\frac{S}{W}\right) \approx \log \sqrt{\frac{S}{W}}^{N}
$$

* The results of (4) in the previous chapter is approximately equal to H.
(4) Information transmission by combination of orthogonal signals

Case 1: $S<W$

Slide in the previous chapter

$$
m=\frac{S}{\eta^{2}}=\frac{S N}{r^{2} W} \quad \text { bits }
$$

Case 2: $S>W$

$$
\log _{2}\left(\frac{1}{r} \sqrt{\frac{S}{W}}\right)^{N}=\frac{N}{2} \log _{2} \frac{S}{r^{2} W} \text { bits }
$$

In case 2: $S>W$

> Transmit the sum of N basis vectors (N-point waveforms) weighted by b_{i} as

$$
s(n)=\sum_{i=1}^{N} b_{i} \phi_{i}(n)
$$

$>$ The maximum energy allocated to each basis vector is $\frac{S}{N}$.
$>$ The maximum number of levels of b_{i} that can be identified without error is

$$
\frac{2 \sqrt{S / N}}{2 \sqrt{W / N}}=\sqrt{\frac{S}{W}}
$$

$>$ Number of signal variations that can be transmitted without error:

$$
\left(\sqrt{\frac{S}{W}}\right)^{N}
$$

5. Dividing multidimensional space

When considered in low dimensions, it seems that even one bit can not be transmitted if $S<W$.

Things change as dimension get bigger

Most of the volume of the hypersphere is near the surface.
$\frac{\text { Volume of sphere of radius } 0.99}{\text { Volume of sphere of radius } 1}=0.99^{n}$

$$
0.99^{300}=0.05
$$

Hypersphere 2

Most of the volume is near the equator.

Cross-section of hypersphere

Cross section by $\mathrm{n}-1$ dimensional hyperplane at distance z from origin
$=$ Volume of $\mathrm{n}-1 \mathrm{D}$ hypersphere of radius $\sqrt{R^{2}-z^{2}}$
$=A R^{n-1}{\sqrt{1-z^{2} / R^{2}}}^{n-1}$

Sphere and cube

Sphere of radius R

$$
V=\frac{\pi^{N / 2}}{(N / 2)!} R^{N} \quad(N: \text { 偶数 })
$$

Cube of side length $\frac{R}{\sqrt{N / 2 \pi e}}$

$$
V=\frac{R^{N}}{(N / 4 \pi e)^{N / 2}}
$$

$\log V=N \log _{e} R-\frac{N}{2} \log _{e}(N / 2 \pi e)$

Equal in the logarithm
6. Division by orthogonal grid

Even if the distance to

 the next signal is as close as $\sqrt{W / N}$, the overlapping volume of the noise sphere is small.

Volume of signal + noise region

Volume of cube of side length $\alpha \sqrt{\frac{W}{N}}$
If $\alpha=\sqrt{2 \pi e}=4.13$, it is equal to the volume of a sphere of radius \sqrt{W}.

Summary of this chapter

The amount of information that can be read from the pattern of \boldsymbol{x} can be evaluated by the number of volume V where $\boldsymbol{x}+\boldsymbol{w}$ can move divided by the volume of the noise sphere.

