Instrumentation and Information Processing

Chapter 2: Information transmission in noise

Hiroyuki Shinoda

https://hapislab.org/public/hiroyuki_shinoda/keisoku_joho
hiroyuki_shinoda@k.u-tokyo.ac.jp

Pattern measurement in linear system

Propagation

Obtain f from a

1. Amount of Information

Recordable amount of information in a device is n bit

The number of distinguishable states in a device is 2^{n}

Computer memory, Hard disc, ... Paper book
Music CD
Analogue record?

* We assume there is a correspondence table between the device status and events.

A measure on amount of information

$I=\log _{2}$ (Number of distinguishable statuses)

Why logarithm ?

- proportional to the number or area of storage devices

2. Information transmitted in noise
1) Case of scalar measurement

I: The number of distinguishable voltages I

$$
I=\infty ?
$$

Quiz

Communication by a single voltage

The receiver receives information by measuring the voltage the sender set.

Sender
Receiver
Infinite information is transferred in a moment ??

2.1 Scalar measurement with noise

Measure voltage V
Range: $0 \sim V_{0}[\mathrm{~V}]$

Noise probability density

Under the above noise, the maximum number of the distinguishable voltages by a single measurement

$$
\frac{V_{0}}{2 e}
$$

2.1 Scalar measurement with noise

A potentiometer that can produce $\frac{V_{0}}{2 e}$ distinguishable
states is equivalent to a memory of $\log _{2} \frac{V_{0}}{2 e}$ bits.
2.2 Transmitted information when the receiver get the average

O Prior information : the signal voltage is constant
O n time measured
O Noise is random and not correlated to signal

In that case, the number of distinguishable signal levels increases \sqrt{n} times

何についての平均か？時間，空間，試行，…

3. Transmitted information amount vs. modulation method
(1) Information transmission by a single amplitude

Scalar

AM (Amplitude Modulation)
$>\phi(n)$: Not limited to a sinusoidal wave
(2) By frequency

FM変調
(Frequency Modulation)

(3) By time shift

PIM
(Pulse Interval Modulation)

(4) By combination of m orthogonal vectors $\phi_{i}(n)$

Example: $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=(1,0,0,1)$

$$
\begin{aligned}
s(n) & =c_{1} \phi_{1}(n)+c_{2} \phi_{2}(n)+c_{3} \phi_{3}(n)+c_{4} \phi_{4}(n) \\
& =\phi_{1}(n)+0+0+\phi_{4}(n)
\end{aligned}
$$

3. Transmitted information amount vs. modulation method

How many bits are transmitted ?

Assumptions
[1] Signal length: N
[2] With a white noise uncorrelated to signal with energy W.
[3] The signal energy is smaller than S.
(1) Information transmission by a single amplitude
$>$ The sent signal wave form: $s(n)=a \phi(n)$. The receiver obtains information by reading the scalar a.
$>\phi(n)$ is known by the receiver in advance.

Consider the minimum difference of a distinguishable by the receiver.

Observed waveform $p(n)=s(n)+w(n)$

$p(n)$ is always possible to be decomposed as

$$
p(n)=p_{1} \psi_{1}(n)+p_{2} \psi_{2}(n)+\cdots+p_{N} \psi_{N}(n)
$$

Arbitrary selected orthonormal base
Choose $\varphi_{1}(n)$ so that $\varphi_{1}(n)=\phi(n)$

Expected value of noise energy allocated to one component
= Expected value of noise energy allocated to a component parallel to $\psi_{i}(n)(i=1,2, \cdots, N)$

$$
\overline{w_{i}^{2}}=\frac{W}{N}
$$

$>$ Noise is random and uncorrelated to signal
> If the probability distribution follows the normal distribution, the probability of

$$
\left|w_{i}\right|>2.58 \sqrt{W / N}
$$

is 1%.

Probability distribution of w_{i}

$w(n)$ is expanded orthogonally using an orthonormal base $\psi_{1}(n), \psi_{2}(n), \cdots, \psi_{N}(n) \quad\left(\sum_{n=1}^{N}\left\{\psi_{i}(n)\right\}^{2}=1\right)$ as

$$
w(n)=w_{1} \psi_{1}(n)+w_{2} \psi_{2}(n)+\cdots+w_{N} \psi_{N}(n)
$$

Then, w_{i} is given as

$$
w_{i}=\sum_{n=1}^{N} w(n) \psi_{i}(n)
$$

If the random variables $w(1), w(2), \cdots, w(N)$ have variance σ^{2} the probability distribution of w_{i} for a large n forms a normal distribution with the variance

$$
\sigma_{i}^{2}=\sum_{n=1}^{N} \sigma^{2}\left\{\psi_{i}(n)\right\}^{2}=\sigma^{2}=\frac{W}{N}
$$

Maximum number of amplitude levels distinguishable in a white noise

$$
I_{\mathrm{AM}}=\frac{2 \sqrt{S}}{r \cdot 2 \sqrt{W / N}}=\frac{1}{r} \sqrt{\frac{N S}{W}}
$$

independent of the waveform of ϕ.

* The r is a comparable number to 1 . The detail on how to determine the appropriate r will be discussed later. For example, the probability of the reading error is 1% for $r=2.58$.
(1) Information transmission by a single amplitude

$$
I_{\mathrm{AM}}=\log _{2} N_{\mathrm{AM}}=\log _{2} \sqrt{\frac{N S}{W}} \quad \text { bits }
$$

(r is omitted)
$>N$ point data is considered.
$>$ A white noise with no correlation with the signal is assumed.
(4) Information transmission by combination of orthogonal signals

The minimum signal energy for sending 1 bit information (two distinguishable states) in noise

$$
\eta_{i}^{2} \approx r^{2} \frac{W}{N} \equiv \eta^{2} \quad\left(\left\|\phi_{i}\right\|=1, i=1,2, \cdots\right)
$$

> r (comparable to 1) will be discussed later.

Case 1: $S<W$

Prepare m orthonormal vectors $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right\}$ and send the following signal representing a m-bit binary number

$$
s(n)=a_{1} \eta \phi_{1}(n)+a_{2} \eta \phi_{2}(n)+\cdots+a_{m} \eta \phi_{m}(n) \quad\left(a_{i}=1 \text { or }-1\right)
$$

η is selected as the minimum value that can transmit 1-bit information, in order to maximize m.

Case 2: $S>W$

Prepare N dimensional orthonormal basis $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{N}\right\}$ and send the weighted sum of them. The weight of each basis vector b_{i} is selected in the following range:

$$
-\sqrt{\frac{S}{N}}<b_{i}<\sqrt{\frac{S}{N}}
$$

then the signal

$$
s(n)=\sum_{i=1}^{N} b_{i} \phi_{i}(n) \quad(n=1,2, \ldots, N)
$$

is transmitted. The receiver decompose the signal and obtain b_{i}. The difference (step size) of the levels of b_{i} is determined as the minimum value that can be distinguished correctly in the noise.
> Learn about OFDM.
(4) Information transmission by
combination of orthogonal signals

Case 1: $S<W$

$$
m=\frac{S}{\eta^{2}}=\frac{S N}{r^{2} W} \quad \text { bits }
$$

Case 2: $S>W$

$$
\log _{2}\left(\frac{1}{r} \sqrt{\frac{S}{W}}\right)^{N}=\frac{N}{2} \log _{2} \frac{S}{r^{2} W} \quad \text { bits }
$$

Question

Consider the following strategy when $S<W$ instead of the previous slide one.
Obtain the amount of transmitted information and compare it with the previous result.
< Modified strategy >
Allocate more energy to limited number of ϕ_{i}, that is, increase the maximum amplitude of $\eta \phi_{i}$ to $(2 k+1) \eta \phi_{i}$ and set $2 k$ states of amplitude for each of the basis. (Then, m decreases.)

Since the maximum signal energy is fixed, the maximum number m ' of the basis is given as

$$
m^{\prime}=\frac{1}{(2 k+1)^{2}} m
$$

Therefore, transmitted amount of information is

$$
\log _{2}(2 k)^{m \prime}=\frac{1}{(2 k+1)^{2}} m \log _{2}(2 \mathrm{k}) \quad \text { bits }<m
$$

Assume that an organism performs a kind of memory operation by autonomously changing and holding the concentrations of three chemical components $\left(x_{1}, x_{2}, x_{3}\right)$ [\%] in the body fluid. In the body, there are three kinds of sensors that output as

$$
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{ccc}
2 & 1 & 0 \\
2 & -1 & 0 \\
-1 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right),
$$

and the sensory system can detect each component of $\left(y_{1}, y_{2}, y_{3}\right)$ with an error of about ± 0.1. Assume that x_{i} can take values in the range of $0<x_{i}<10$, and there is no correlation among the sensing errors of each component.

Answer the amount of information in bit that this memory system can record in one operation.

