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Measurement of Pattern 

１）Spatial pattern

２）Temporal pattern

３）Pattern of physical parameters

４）Composite of the above
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Classification of pattern measurement

Physical 

parameter

Information 

needed

• Cloud distribution

• Vegetation of forest

• Location and spectrum 

of stars

• Surface temperature 

distribution

• Driving condition of car

• State of living tissue

• Thinking brain state

• Object shape

• 3D model of the 

environment

• Driver's fatigue

• Robot position

• Human behavior
・
・
・

Phenomenon 

used

• Wave reflection, 

transmission, 

absorption

• X-ray absorption

• resonance

• Nuclear magnetic 

resonance

• Ohm's law

• Photoelectric effect

• interference

• Moire

• Black body radiation

• Thermoelectric effect

• Hook's law

• Piezoelectric effect

• Tunneling Effect
・
・
・

• Temperature

• Electromagnetic wave 

• Electric/magnetic field

• Acoustic field

• Force/pressure/stress

• Displacement, 

vibration

(solid, liquid, gas)

• Velocity, acceleration, 

angular velocity, 

position

• Elasticity, viscosity

• Time, frequency
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Measurement vs. communication

[Measurement]   Obtain quantities of (mainly) natural object

[Receiving signal in communication]   

Obtain the signal that was intentionally 

sent from the sender

Phone, Wi-Fi, Bluetooth, ITS, IC tag, …

[Mixture of measurement & communication]   

Sensor network, telemetry, GPS, …
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Measuring signal amplitude in white noise 

Goal of today 

Evaluating the theoretical limit of measurement error



8

Quiz

A (100 coins) B (100 coins)

Mixture of

face-up: 30 

Face-down: 70

Top half: face-up

Bottom half: face-down

You can freely swap coins between A and B or turn 

them, but you cannot see the coins. 

How can you make the numbers of face-up coins and 

face-down coins equal in both A and B?
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A classical technique called “Synchronous averaging”

s (t)

w (t)

• p(t) = s (t) + w(t) is observed

• Finite signal length

• Same waveform every time

• Synchronous signal is obtained

Signal

Noise 
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Example of 

synchronous averaging
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100 averaging
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s1 (t) sn (t)

A： s(t) + w(t)

B：trigger

Synchronous averaging: Averaging values at 

each time for time-shifted signals so that the 

trigger signals overlap 

𝐴𝑣𝑔 𝑡 =
1

𝑁
෍

𝑛=1

𝑁

𝑠𝑛 𝑡 + 𝑤𝑛(𝑡)

→ 𝑠 𝑡 (𝑁 → ∞)

s2 (t)
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Examples of synchronous averaging  

Biological signal measurement

EEG, MEG, Electrocardiography, EMG, …

Digital oscilloscope

Non destructive inspection

・・・
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Image with noise
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After averaging 100 images
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0

1

2

Measured value p Noise PDF

Range: 0 ～ V0 [V]

Noise voltage 

Measurement model 1 

Consider a measured value 𝑝 is given as 

𝑝 = 𝑠 + 𝑤

(𝑠: the true value, 𝑤: noise).

An example of noise PDF

(probability density function)

e-e 0
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Central limit theorem for Measurement

If w is a random value, averaging multiple measured values 

improves the measurement error.

○ prior information:  True value is constant 

○ Measure n times

○ Noise is random at every measurement

Time 

x1 x2 x3 x4 x5

𝑒𝑛 : Error (SD) of 𝑛-averaged data, 𝑒𝑛 = 𝐸 𝑝AVG − 𝑠 2

𝑝AVG : Average of 𝑛-data 

𝑒𝑛 =
𝑒1

𝑛
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A special case: Random walk

In the case that  𝑤 = 𝑤0 or −𝑤0 (with 50% probability), it is 

“Random walk.”

0

+1
-1

𝑑 𝑛 : Position after 𝑛 trials 𝑑 𝑛 = 𝑎1 + 𝑎2+⋯ + 𝑎𝑛, 𝑎𝑖 = ±1

Understanding  𝑒𝑛 =
𝑒1

𝑛

𝑒𝑛 : Error (Standard deviation) of 𝑛-averaged data

Expected value of 𝑑 𝑛 : 𝐸 𝑑 𝑛 = 0

Variance of 𝑑 𝑛 : 

𝑉 𝑑 𝑛 = 𝐸 𝑑 𝑛 2 = 𝐸 𝑎1
2 + 𝑎2

2 +⋯+ 𝑎𝑛
2 = 𝑛
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Assume 𝑤𝑖: random variable of variance 𝜎2 and average 0

General case

The average and variance of 

𝑤 = 𝑤1 +𝑤2 +⋯+𝑤𝑛

𝑉 𝑤 = 𝐸 𝑤2 = 𝐸[ 𝑤1 +𝑤2 +⋯+𝑤𝑛
2]

= 𝐸 𝑤1
2 +𝑤2

2 +⋯+𝑤𝑛
2

= 𝑛𝜎2.

𝐸 𝑤𝑖𝑤𝑗 = 0 for 𝑖 ≠ 𝑗

Therefore the standard deviation of 𝑤 ∝ 𝑛.

are respectively written as

𝐸 𝑤 = 0

and
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Summary up to now

Assume the observed value is the sum of a constant 

true value and a random noise. Then the standard 

deviation of the error of the average of 𝑛-

measurements decreases in proportion to 
1

𝑛
. 

Note: This does not hold unless the noise has a 

random value in each measurement.
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Topic from now

From the case “that the true value is constant”

to the case that “the true value has a certain pattern”

Caution

The pattern 𝜙 in the next topic might be seen as the 

signal 𝑠(𝑡) shown in “Synchronous averaging,” but 

that is not so. 

The synchronous averaging is an example of the 

case that the true value is constant.
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Measurement model 2

Consider measured values are given as 

p: 𝑁 dimension vector with components of 𝑁 measure values

𝒔: True value (signal)

𝒘: White noise independent from 𝒔

Signal energy

Noise energy

that is a 𝑁 dimensional vector.

𝒑 = 𝒔 +𝒘

𝑆 = | 𝒔 |2 = ෍

𝑖=0

𝑁−1

𝑠𝑖
2

𝑊 = | 𝒘 |2 = ෍

𝑖=0

𝑁−1

𝑤𝑖
2
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Problem 1

Assume 𝝓 is known. Then obtain the minimum 

value of the signal energy detectable in a white 

noise whose energy is 𝑊, where 𝒘 is not 

correlated with 𝒔.

Signal 𝒔 = 𝐴𝝓 is a 𝑁 dimensional vector composed 

of 𝑁 data where 𝝓 = 1 and 𝐴: constant scalar.
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Answer

It is always possible to decompose the noise 𝒘 as

where 𝒘′ is a vector orthogonal to 𝝓.

Since 𝒔 and 𝒘 are independent from each other, the 

expected value of 𝑎2 is given as

Therefore, the signal energy 𝑆 must be larger than 𝑊/𝑁
to be detected in the white noise with energy 𝑊.

In evaluation of A from the measured 𝑁 data, the above 𝑎
is the inevitable error.

𝒘 = 𝑎𝝓 +𝒘′

𝐸 𝑎2 =
𝑊

𝑁
.
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Summary up to here

The expected value of noise energy allocated to a 

component along the signal is give as 

➢ 𝑁 data signal is considered.

➢ Random noise is assumed.

➢ In normal distribution, the probability for

𝑤𝑖 > 2.58 𝑊/𝑁

is 1 %.

𝐸 𝑎2 =
𝑊

𝑁



25（Supplementary explanation）

Measured vector 𝒑 can always be decomposed as

Parallel to the signal Arbitrarily selected orthonormal basis 

(orthogonal to 𝝓)

The energy of the signal 𝒇 is given as 

0

（Parseval‘s theorem）

𝒑 = 𝑝0𝝓+ 𝑝1𝝋1 + 𝑝2𝝋2 +∙∙∙ +𝑝𝑁−1 𝝋𝑁−1

𝒇 = 𝑎1𝝋1 + 𝑎2𝝋2 +∙∙∙ +𝑎𝑁 𝝋𝑁

𝐹 = 𝑎1
2 + 𝑎2

2 + ∙∙∙ + 𝑎𝑁
2

that is independent on the choice of basis.
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ρ(𝑎) : Probability density of 𝑎

If 𝑤𝑖 and 𝑤𝑗 (𝑖 ≠ 𝑗) is independent from each other 

and their variance is 𝜎2, 𝜌(𝑎) converges to a 

Gaussian distribution with variance 𝜎2 as 𝑁 increases. 

(Central limit theorem)

Parameter a of the former slide is given as 

＊Note 𝝓 = 1.

𝑎 = 𝒘 ∙ 𝝓 = ෍

𝑖=0

𝑁−1

𝑤𝑖𝜙𝑖 .

（Supplementary explanation 2）
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Derivation of the variance of 𝑎 in the previous slide

𝐸 𝑎2 = 𝐸[ 𝑤0𝜙0 +𝑤1𝜙1 +⋯+𝑤𝑁−1𝜙𝑁−1
2]

= 𝐸 𝑤0𝜙0
2 + 𝑤1𝜙1

2 +⋯+ 𝑤𝑁−1𝜙𝑁−1
2

= 𝜎2 𝜙1
2 + 𝜙2

2 +⋯+ 𝜙𝑛
2

∵ 𝐸 𝑤𝑖𝑤𝑗 = 0 for 𝑖 ≠ 𝑗

= 𝜎2

（Supplementary explanation 3）
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Problem 1-a Signal amplitude measurement

We measure the effective value of a time-series 

signal under a white noise with energy 𝑊.  Obtain 

the inevitable measurement error of the effective 

value.

As the prior information, the signal waveform is 

given as 𝑠(𝑛) = 𝐴𝜙(𝑛) with an unknown parameter 

𝐴 where 𝑛 = 0, 2, 3, … ,𝑁 − 1)

＊We will change the expressions of 𝒔 and 𝝓 in the following. 

＊In the following, 𝑁-point time-series signal 𝑠 𝑛 and 

𝜙 𝑛 are dealt as “𝑁 dimensional vectors.” 
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Answer 1-a

Therefore, the standard deviation of the estimated 

effective value (= root mean square value, RMS) is 

written as

with the inevitable error 𝑎 whose standard deviation is

The best estimation of A is given as

)( )(
1

0

nnpA
N

n


−

=

=

𝜎𝐴 = 𝐸 𝑎2 =
𝑊

𝑁
.

𝜎 =
𝜎𝐴

𝑁
=

w

𝑁
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Question 1 

Averaging 𝑓(𝑛) for 𝑛 = 1, 2, … ,𝑁 is equivalent to 

obtaining the vector component parallel to

𝜙(𝑛) = 𝐶

when we consider 𝑓(𝑛) and 𝜙(𝑛) as 𝑁 dimensional vectors.

Confirm this. 
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Consider estimating the signal amplitude from 𝑝(𝑛). 
Prove that obtaining 𝐴 that minimizes

is equivalent to conducting production of 𝑝(𝑛) to 𝜙(𝑛).

Question 2

 
−

=

−=
1

0

2
)()(

1 N

n

nAnp
N

E 
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Signal vector 𝜙(𝑛)

Measured vector 𝑝(𝑛)

𝐴

Obtain 𝐴 to 

minimize the above

Obtain the component 

included in 𝑓(𝑛) parallel 

to 𝜙(𝑛). 

Projection

෍

𝑛=0

𝑁−1

𝑝 𝑛 − 𝐴𝜙(𝑛) 2
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Infrared

Application in infrared measurement

Propose a method to decrease 

the measurement error by the 

light from the environment.
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Consider measuring the phase of a sinusoidal 

signal at frequency 𝑓 with energy 𝑆. Assume a 

white noise with energy 𝑊 is added to the signal. 

Express the inevitable estimation error of the 

phase. 

Problem ２
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Answer

N

W
SE =   2

（Cramer-Rao bound）
SN

W
=  2

)cos()( += BnAns

Express the sampled signal (true value) as

Then the difference of 𝑠(𝑛) by a small phase shift  is written as  

.

  )cos(cos)(  +−++= BnABnAns

 )sin(  +− BnA

SFfB /2=

( ) 22
2

1

2

2
)(  == 

=

S
NA

nsE
N

n

and the energy of the above signal is

Suppose the above expected value of the energy of 𝑠(𝑛) is 

equal to the energy of the component parallel to 𝑠(𝑛) in the 

white noise as

(1) ,

.

Therefore

This is the inevitable estimation error of 𝜙.
Note that we assumed 𝜙 was small and (1) was valid. 
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When we estimate a parameter 𝛽 from a signal 

𝑠𝛽 𝑛 𝑛 = 1, 2,… ,𝑁 under a uncorrelated white 

noise with energy 𝑊,  we can not specify 𝛽 within the 

error Δ𝛽 if the following difference-energy

is smaller than 𝑊/𝑁. 

( )  
2

1

)()(
=

+ −=
N

n

nsnsE 

General principle
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Noise density

Hz

V
0.2

What does this mean? 

Example: 

In the above case, the noise effective value for 100 Hz 

bandwidth is:

]V[  201000.2 =



38

Question 

A sinusoidal wave of a known frequency was 

observed for 𝑇 [s] under a white noise with the 

frequency density 𝑑 [V/ Hz].

Obtain the inevitable estimation error in the 

effective value. 
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Answer

Suppose 𝑁 point data are obtained by sampling the 

observed signal (after low-pass filtering with the cut-off 

frequency of 𝐵 [Hz], the Nyquist rate). Then, the noise 

energy is written as 

If the signal phase is known, the estimation error of 

the signal effective value (the standard deviation of 

the estimated value ) is given as

𝑊 = 𝑑2𝐵𝑁. (𝑁 = 2𝐵𝑇)

𝜎 =
𝑊

𝑁
(Problem 1-a)

= 𝑑
𝐵

𝑁
= 𝑑

𝐵

2𝐵𝑇
=

𝑑

2𝑇
[V]

Additional question: How does the result change if the 

phase is unknown (only the frequency is known)?
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Question 

Mic 1 Mic 2

d

Consider estimating the sound source direction from 

acoustic signals observed at two points. 

Assume that it is a two-dimensional problem and the 

sound source is far enough. 

The direction is estimated by the temporal 

difference of the signals observed at 

microphones 1 and 2.

Show the inevitable estimation error of the 

noise source direction assuming the following 

values. 

➢ Observed signal at microphones 1 and 2:

Sinusoidal wave of amplitude 1 V and 500 Hz
➢ Observed signal duration: 0.1 s

➢ Noise at the microhphones: 0.01 V/ Hz


